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Presentation and visualization of trade-off solutions in many-objective optimization problems are difficult due to the large number
of solutions in a hyper dimensional objective space. A recently proposed tool, known as aggregation tree (AT), can be used to analyze
the degree of conflict between groups of objectives in a many-objective problem. In this paper, we present a case study on the internal
permanent magnet motor design with seven objectives. The results show that the AT is able to provide insight into the electrical
machine design problem (in accordance with the common knowledge of physics) as well as guidance in the reduction of objectives.

Index Terms—Design Optimization, Multi-objective Optimization, Objective Reduction, Permanent Magnet Motors.

I. INTRODUCTION

THE DESIGN of electrical machines are often formulated
as optimization problems in which the objective functions

are defined over key performance features. The most commonly
used objectives in the literature of electric motor design are
size or weight of the machine [1], [2], material cost [3],
maximum or average torque [4], [5], torque ripple [3]–[5], and
efficiency or losses (core and copper) [1], [2], [4]. In general,
some of these objectives are in conflict, what requires the
solution of a multi-objective optimization problem (MOOP).
Unfortunately, the difficulty of the MOOPs increases with the
number of objectives, and the solution of the many-objective
problem (with four or more objectives) becomes problematic
for standard evolutionary multi-objective (EMO) algorithms
[6]. Besides, even if a reasonable set of solutions can be
found, it is hard to present and visualize them in the high-
dimensional objective space. In this context, we present a
methodology, known as Aggregation Tree (AT) [7], which
can be used by designers and practitioners to understand the
relationships between different objectives and possibly aid
them to reduce the problem size in an effective way. In this
paper, the visualization of the objectives through the AT is
demonstrated using the design of an Interior Permanent Magnet
(IPM) machine as an example. The AT provides insight into
the IPM design problem as well as guidance in the reduction of
objectives. In this way, the designer has empirical knowledge to
guide him in the formulation and solution of the optimization
problem.

II. MANY-OBJECTIVE OPTIMIZATION

A multi-objective optimization problem can be formulated
as:

(1)minimize (f1(x), f2(x), ..., fk(x)), x ∈ F

where fi(·) is the i-th objective function to be minimized and
F represents the feasible set. Solving the problem defined

in (1) involves finding a set of Pareto-optimal solutions, i.e.
solutions that cannot be improved in one objective without
compromising their performance in another one.

The most commonly used methods for multi-objective prob-
lems are the evolutionary algorithms with Pareto-based fit-
ness assignment. Despite of their success, if the number of
objectives is greater than four, Pareto-ranking does not work
as a good discriminator of solutions as most of them are
non-dominated. In addition, the number of solutions that are
required to approximate the Pareto front increases exponen-
tially with the number of objectives, and their visualization in
the objective space becomes difficult. Due to these additional
difficulties this kind of problem has been considered by the
related literature as a special class of multi-objective problems,
referred to as Many-objective problems [6].

III. AGGREGATION TREE

Aggregation Trees [7] can be used to easily visualize the
relationships between objectives of a Many-objective problem,
group objectives according to their reducibility, and show
quantitatively the amount of conflict between them.

To build the tree, at each iteration the algorithm finds the
least conflicting pair of objectives and aggregates them in
a compound objective. Thus, at each iteration the algorithm
reduces the number of objectives by one and as it proceeds
the new compound objective may be further combined with
the remaining ones. The conflict Cab between two objectives
fa and fb is given by Equation (2). Basically, the most usual
measure of conflict is a normalized sum of rank differences.
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Given a set of solutions X = {x1,x2, ...,xn}, Rij is the rank
of solution xi in the objective j and cmax is the maximum
possible conflict in a set of n solutions.

IV. IPM DESIGN

In this paper, we explore the Aggregation Tree to understand
and to reduce the number of objectives in the many-objective
design optimization of an IPM motor. The design variables,
depicted in Fig. 1, are defined as:
x1: Winding slot depth (mm), 0.5 ≤ x1 ≤ 18
x2: Winding slot length (mm), 4 ≤ x2 ≤ 21.5
x3: Winding slot angle (deg), 1 ≤ x3 ≤ 14
x4: Depth of PM (mm), 6 ≤ x4 ≤ 26
x5: Thickness of PM (mm), 0.5 ≤ x5 ≤ 20
x6: Width of PM (mm), 0.5 ≤ x6 ≤ 39
x7: Lower width of the rotor slot(mm), 0.5 ≤ x7 ≤ 20
x8: Upper width of the rotor slot(mm), 0.5 ≤ x8 ≤ 39

Fig. 1. IPM Design Problem

Based on a review of several literature papers related to elec-
trical machine design [1]–[5], the following seven objectives
were selected for the problem formulation:
f1: Average Torque
f2: Torque Ripple
f3: Permanent Magnet Volume
f4: Rotor Losses
f5: Stator Losses
f6: Starting Torque
f7: Ohmic Losses

V. RESULTS

With the defined problem, a Latin Hypercube was utilized
to sample the design space in 10000 different locations. These
samples were then used to generate the aggregation tree de-
picted in Figure 2. Parent nodes represent possible aggregations
and the conflict between the children nodes. As it can be seen,
the aggregation tree confirms usual assumptions such as the
low conflict between average torque (f1) and starting torque
(f6); and low conflict between stator losses (f5) and ohmic
losses (f7).

Several scenarios can be derived from the AT for the
reformulation of the design problem. For instance, we can
select just one objective from low conflict branches (e.g., f1,

Fig. 2. Aggregation Tree

f2, f3 and f5) for the new problem or aggregate the objectives
in the neighboring nodes to reduce number of objectives (e.g.
(f1 + f6), (f7 + f5), f2 ,(f3 + f4)).

VI. CONCLUSION

In this paper, we have shown how the designer can enhance
his understanding of a many-objective problem through the use
of the aggregation tree. Its application to the IPM design has
verified some usual assumptions and provided directions for
an informed choice of objectives in the design problem. In the
full paper, the authors intend to apply optimization to some
scenarios suggested by the AT in order to show the actual gain
the approach can have in the overall optimization performance.
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